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1 Introduction

Since its initial formulation, the AdS/CFT correspondence has opened up many new av-

enues for studying gravity [1]. It provides a dictionary that can translate unfamiliar gravi-

tational physics into familiar field theory, and vice versa. One of its most powerful aspects

is the ability to encode the spatial organization of the bulk as a relationship between the

degrees of freedom in the CFT. A particularly useful way of analyzing the geometry of

spacetime is through examining the structure of geodesics and extremal surfaces. This has

a long history in the AdS/CFT context, and an important new theme was begun with

the work of [2]. Their results in AdS3 showed that the entanglement entropy of a CFT2

interval is dual to the length of a bulk geodesic anchored at the interval’s endpoints.

The connection between entanglement and geometry [3] has become of fundamen-

tal interest, and has been expanded to many other aspects of quantum information.

These include the emergence of gravitational equations of motion from CFT entangle-

ment entropies [4], bulk gauge freedom interpreted as boundary quantum error correcting

codes [5–7], the volume of Einstein-Rosen bridges as complexity [8], and the entanglement

wedge cross section as CFT entanglement of purification [9].
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A useful auxiliary space termed kinematic space has been introduced describing the

structure of geodesics while also geometrizing entanglement entropy [10–12]. Each bound-

ary anchored geodesic, or equivalently each pair of boundary points, is viewed as a single

point in kinematic space. One of the major developments discovered through this con-

struction was the holographic dual of a bulk field integrated over a boundary anchored

geodesic, namely the OPE block of the corresponding dual operator in the CFT. This is

closely related to the duality between conformal blocks in the CFT and geodesic Witten

diagrams in the bulk [13, 14]. The properties of OPE blocks themselves have been studied

further for defect CFTs [15, 16] and using modular flow [17].

While these works on kinematic space were thorough, they mainly focused on pure AdS.

Followup papers [18–24] have worked towards extending kinematic space and the OPE block

duality to more general AdS spacetimes. We will continue this line of inquiry for AdS3,

where all vacuum solutions to the Einstein equation with negative cosmological constant

are locally AdS3 and can be obtained as quotients. The immediate challenge is that there

is no longer a unique geodesic through the bulk between any pair of boundary endpoints. A

natural question is to ask how the CFT dual of a geodesic integrated bulk field changes. We

will argue that in states dual to quotient geometries, OPE blocks decompose into contri-

butions which are invariant under the quotient action. Each contribution is dual to a bulk

field integrated over a single geodesic which may wind around the quotient’s fixed points.

Our arguments are based on the monodromy of maps between pure AdS3 and the

quotient geometries. In the bulk the monodromy is responsible for the appearance of non-

minimal geodesics, and on the boundary it induces non-analyticities in the OPE blocks.

We resolve the latter issue by constructing quotient invariant OPE blocks, and interpret

them in terms of winding geodesics. We often utilize the group manifold description of

AdS3 and its quotients, in which the structure of geodesics is made clear, and their lengths

are easily computable. Throughout, we work with the Euclidean and Lorentzian versions

of the construction in parallel to emphasize their differences.

In section 2 we review the duality between OPE blocks and geodesic integrated bulk

fields. Then we introduce the quotient spacetimes of interest and find explicit maps between

them and pure AdS3. In section 3 we use these maps to study the structure of geodesics

in the quotient geometries and determine their lengths. In section 4 we construct quotient

invariant OPE blocks, highlighting their relationship to winding geodesics. In section 5 we

conclude with a summary and discussion of remaining open questions.

2 Preliminaries

2.1 OPE blocks and kinematic space

In a 2d CFT, the OPE allows us to expand the product of two quasiprimary operators in

terms of a basis of local operators at a single location. The OPE can be organized by the

contributions from conformal families in the theory, each consisting of a quasiprimary Ok
and its descendants. Considering two scalar operators with the same conformal weight ∆,
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conformal symmetry dictates that

Oi(x)Oj(0) =
∑
k

Cijk |x|∆k−2∆ (1 + b1 x
µ∂µ + b2 x

µxν∂µ∂ν + . . .
)
Ok(0) , (2.1)

with some theory dependent constants Cijk, and theory independent constants bi. Since

much of this structure is fixed by symmetry, it is convenient to define an OPE block

Bijk (xi, xj) associated to each quasiprimary Ok that repackages the contribution of a con-

formal family,

Oi(xi)Oj(xj) = x−2∆
ij

∑
k

CijkBijk (xi, xj) . (2.2)

Kinematic space has been defined as the space of pairs of CFT points, or equivalently

as the space of boundary anchored geodesics in pure AdS [11, 12]. Since OPE blocks are

functions of two boundary points they are fields on kinematic space, and this suggests that

they are related to the geodesics of the bulk dual. Indeed, it was shown that for pure AdS

the dual of a scalar OPE block is a bulk field integrated over a boundary anchored geodesic,

Bijk (xi, xj) ∼
∫
γij

ds φk(x) , (2.3)

where γij is the geodesic with endpoints (xi, xj) and φk is the scalar field dual to Ok.
The duality between the OPE blocks and geodesic integrated fields was established

by showing that both objects behave as fields on kinematic space with the same equa-

tion of motion, and the same boundary conditions. Each OPE block built from a scalar

quasiprimary Ok is in an irreducible representation of the conformal group and satisfies

an eigenvalue equation under the action of a quadratic conformal Casimir L2, with the

eigenvalue induced from Ok,

[L2,Bijk (xi, xj)] = −∆k(∆k − 2)Bijk (xi, xj) . (2.4)

By expressing the Casimir operator in the differential representation appropriate for Bijk ,

this becomes a Laplacian on the dS2 × dS2 kinematic space,

2[�dS2 + �̄dS2 ]Bijk (xi, xj) = −∆k(∆k − 2)Bijk (xi, xj) . (2.5)

On the other hand, the bulk scalar field φk(x) dual to Ok satisfies a wave equation on

AdS3, with its mass related to ∆k by the holographic dictionary,

�AdS3φk(x) = m2φk(x) = ∆k(∆k − 2)φk(x) . (2.6)

Then, the remarkable intertwining property of isometry generators determines the equation

of motion for the geodesic integrated field [11]∫
γij

ds �AdS3φk(x) = −2[�dS2 + �̄dS2 ]

∫
γij

ds φk(x) . (2.7)

The conclusion is that the geodesic integrated field obeys the same kinematic space wave

equation (2.5) as the OPE block,

2[�dS2 + �̄dS2 ]

∫
γij

ds φk(x) = −∆k(∆k − 2)

∫
γij

ds φk(x) . (2.8)
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Rounding out the proof requires showing both quantities satisfy the same constraints and

the same boundary conditions, which determine the relative normalization omitted in (2.3).

For pure AdS there is a one-to-one correspondence between pairs of spacelike separated

boundary points and geodesics in the bulk. This makes it simple to identify both the space

of pairs of boundary points, and the space of bulk geodesics as the same kinematic space.

But for spacetimes that are locally AdS3, the existence of non-minimal geodesics in the

bulk obfuscates this prescription. In such cases it is not a priori clear in what sense the

duality (2.3) holds.

This question was addressed for the case of conical defect spacetimes in [22]. Static

conical defects are locally AdS3 geometries obtained from AdS3 by a ZN quotient in the

angular direction, leaving a 2π/N periodic φ̃ coordinate. This coordinate parametrizes the

one dimensional boundary of a timeslice on which the OPE can be studied. The exact CFT

states dual to the conical defect geometries will depend on the system under scrutiny, but

in general they can be viewed as the CFT vacuum excited by a heavy operator that sources

the defect in the bulk [25–27]. In the presence of other operators the OPE does not have

an infinite radius of convergence, and it becomes more difficult to study the properties of

the OPE blocks directly. Instead, in [22] the excited CFT states were lifted to vacuum

states of a covering space CFT on an N -times longer circle parametrized by φ [28]. This

process can be seen as removing the discrete ZN symmetry of the base CFT states; only

appropriately symmetrized quantities on the cover descend to observables on the base [29].

With this construction, the OPE blocks in the base and cover CFTs can be related.

Individual OPE blocks on the cover Bk(φ1, φ2) are not ZN symmetric, but can be combined

into gauge invariant observables dubbed partial OPE blocks,

Bk,m(αm, θ) =
1

N
|2− 2 cos(2αm)|−∆k

N−1∑
b=0

exp

(
i
2πb

N

∂

∂θ

)
Bk(αm, θ) . (2.9)

Here, the cover OPE blocks are written in terms of the half opening angle α = (φ1−φ2)/2

and centre angle θ = (φ1 + φ2)/2. The angular distance α between operators is taken to

be fixed at αm while the rotations generated by ∂/∂θ implement the symmetrization. The

full OPE blocks in the base theory B′k receive contributions from partial OPE blocks at all

allowed angular separations αm on the cover

B′k(α, θ) =
1

N

N−1∑
m=0

exp

(
i
2πm

N

∂

∂φ1

)
Bk,m(αm, θ) , (2.10)

where ∂/∂φ1 generates changes in separation.

Finally, it was shown that the partial OPE blocks individually satisfy duality relations

like (2.3) as fields integrated over minimal or non-minimal geodesics in the conical defect

spacetime. The angular separation αm of the block Bk,m is related to the winding number

of the geodesic in
∫
γm
ds φk. Hence, the new observables Bk,m allow us to obtain more

fine-grained information about the bulk spacetime that reaches beyond the entanglement

shadow limiting minimal geodesics and Ryu-Takayanagi entanglement entropy.

– 4 –
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Our approach in this paper will be similar, but can more readily be applied to the

broad class of AdS3 quotient geometries. We will argue that the base OPE blocks for

states dual to these geometries can be obtained through the coordinate maps we develop

as a sum over partial OPE blocks. The partial blocks are constructed to be invariant under

the quotient action. We propose that a partial block is dual to a bulk field integrated over

an individual geodesic, which can be minimal or not, as specified by the monodromy under

the map. To avoid branch cuts in the full OPE blocks, we identify them as a sum over

partial OPE blocks.

While the bulk interpretation of the partial blocks is clear, they give the contribution

to the OPE from individual geodesics or saddlepoints of the path length action [25], our

new method also affords a better understanding of the CFT interpretation. Each partial

block gives a contribution to the OPE as distinguished by the monodromy around the

excited state’s heavy operator insertion. To reach these results, we must first develop

exact mappings between AdS3 and the quotient geometries that can be used to transform

the OPE blocks. We proceed with the Euclidean and Lorentzian cases in turn.

2.2 AdS3 quotients

2.2.1 Euclidean AdS

One construction of AdS3 is through the R3,1 embedding space. We start with the metric

ds2 = dX2
0 +dX2

1 +dX2
2−dX2

3 , with AdS3 defined as the surface X2 = X2
0 +X2

1 +X2
2−X2

3 =

−`2. There are a number of different parametrizations of this hyperboloid which give

different patches of AdS. We focus on the Poincaré patch, which only covers part of the

hyperboloid. To get the Poincaré metric, we implement the coordinates

X0 =
1

2u

(
u2 − `2 + x2 + t2

)
X1 = `

x

u

X2 = `
t

u

X3 =
1

2u

(
u2 + `2 + x2 + t2

)
,

(2.11)

which leads to

ds2 =
`2

u2

(
dt2 + dx2 + du2

)
. (2.12)

We can do a further coordinate transformation by setting w = x + it, w̄ = x − it, which

gives us the metric

ds2 =
`2

u2

(
dw dw̄ + du2

)
. (2.13)

Boundary anchored geodesics, and especially their lengths, will be very important for

understanding the OPE block duality. In Poincaré coordinates, the geodesic distance d

along the embedding surface between two points P1 and P2 obeys

cosh
d

`
= −P1 · P2

`2
=

1

2u1u2

(
(t1 − t2)2 + (x1 − x2)2 + u2

1 + u2
2

)
=

1

2u1u2

(
(w1 − w2)(w̄1 − w̄2) + u2

1 + u2
2

)
.

(2.14)
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In the limit where both points approach the boundary, such that u1, u2 → 0 with their

ratio held fixed, u1/u2 → 1, this becomes

cosh
d

`
= 1 +

1

2u1u2
(w1 − w2)(w̄1 − w̄2) . (2.15)

The length of a boundary anchored geodesic can then be approximated by

d ≈ ` log

(
(w1 − w2)(w̄1 − w̄2)

u1u2

)
. (2.16)

We can also construct Poincaré AdS3 as a group manifold [30]. This is done by con-

sidering each point g in Euclidean AdS3 as an element of SL(2,C)/SU(2) where, in the

embedding coordinates,

g =

(
X3 +X0 X1 + iX2

X1 − iX2 X3 −X0

)
. (2.17)

For the Euclidean Poincaré embedding we have,

g =

(
u+ ww̄/u `w/u

`w̄/u `2/u

)
. (2.18)

The metric on AdS3 (2.13) is then given by the Cartan-Killing metric ds2 = 1
2Tr(g−1dgg−1dg)

which has the correct isometry group for Poincaré AdS3, SL(2,C)/Z2 [31]. Other locally

AdS3 solutions are constructed as quotients by a subgroup of the isometry group. The

subgroups we study in this paper are conjugacy classes generated by the elliptic, parabolic,

and hyperbolic elements of the form

hell =

(
e−iπγ 0

0 eiπγ

)
, hpara =

(
1 α

0 1

)
, hhyper =

(
eβ/2 0

0 e−β/2

)
, (2.19)

where 0 < γ < 1, α ∈ C, and β ∈ R. In each case, elements related by conjugation,

g ∼ hgh†, are identified to obtain the quotient manifold.

Each type of element produces a different locally AdS3 solution. Identification using the

elliptic element will give the conical defect, abbreviated ‘CD’, with deficit angle 2π(1− γ).

Accounting for the Z2 quotient of the isometry group, the subgroup generated by an elliptic

element is the cyclic group ZN , where we take N = 1/γ ∈ N. The other two elements lead

to infinite discrete groups. A quotient using the parabolic element with α = 2π yields

the massless BTZ black hole, which we abbreviate as ‘0M’. The hyperbolic element with

β = 2π
√
M gives the static BTZ black hole with mass M , which we abbreviate as ‘BTZ’. In

summary, the three types of quotient lead to identifications on the Poincaré patch as follows,

CD: (w, u) ∼ (e−2πi/Nw, u) , (2.20)

0M: (w, u) ∼ (w + 2π`, u) , (2.21)

BTZ: (w, u) ∼ (e2π
√
Mw, e2π

√
Mu) . (2.22)

The N →∞ limit of the CD metric and the M → 0 limit of the BTZ metric both produce

the 0M metric, but the respective conjugacy classes (2.19) by which elements are identified

– 6 –
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are not related in this way. Some differences between these limits have been noted in [32].

For these reasons we treat the 0M solution as a distinct case throughout.

Other locally AdS3 solutions can be obtained using quotients by more complicated

subgroups, such as a rotating BTZ black hole using a combination of elliptic and hyperbolic

identifications, but we focus on the three archetypal examples above.

Finally, one may wonder if we can consider conical defects where N > 1 but not an

integer. Considering the rational case of γ = m/n, we find that the subgroup generated

by this is Zn, which is not distinguishable from the integer case. For non-rational γ things

are worse, as the subgroup generated is no longer finite and the identification one gets

is ambiguous. In addition, the validity of non-integer conical defects is suspect in string

theory [27, 33], so we will not consider them further.

2.2.2 Lorentzian AdS

The Lorentzian case presents a challenge in our approach because the boundary cannot be

described by a single complex coordinate. Still, one direct way of approaching Lorentzian

AdS using our knowledge of the Euclidean case is to compare them on a timeslice. The

t = 0 slice in embedding coordinates is

X0 =
1

2u

(
u2 − `2 + x2

)
X1 = `

x

u

X2 = 0

X3 =
1

2u

(
u2 + `2 + x2

)
.

(2.23)

This now satisfies the Lorentzian constraint equation X2 = X2
0 + X2

1 − X2
2 − X2

3 = −`2

as well as the Euclidean one, allowing for direct comparison between signatures. On the

timeslice the metric is

ds2 =
`2(dx2 + du2)

u2
, (2.24)

which transforms to the upper half plane (UHP) using s = x+ iu, s̄ = x− iu

ds2 =
−4`2dsds̄

(s− s̄)2
. (2.25)

The upper half plane inherits a PSL(2,R) isometry group from the full SL(2,R)×SL(2,R)/Z2

of Lorentzian AdS3 when restricted to the timeslice. Again, we can describe a point g in

the timeslice using

g =

(
X3 +X0 X1 −X2

X1 +X2 X3 −X0

)
. (2.26)

Then in the group manifold description a point on the UHP is

g =
2i

s− s̄

(
|s|2 s+s̄

2
s+s̄

2 1

)
. (2.27)

– 7 –
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The action of a PSL(2,R) isometry group element(
a b

c d

)
, ad− bc = 1 , (2.28)

will transform the UHP coordinate as

s→ as+ b

cs+ d
. (2.29)

The PSL(2,R) isometry group also has the three different types of elements that define

conjugacy classes. The elliptic, parabolic, and hyperbolic elements are now given by

hell =

(
cos θ − sin θ

sin θ cos θ

)
, hpara =

(
1 α

0 1

)
, hhyper =

(
eβ/2 0

0 e−β/2

)
, (2.30)

where 0 < θ < 2π, α ∈ R, and β ∈ R. Note that there are differences from the SL(2,C)/Z2

cases we had previously. In particular, the parabolic element involves a real value and the

structure of the elliptic element is different. Once again, locally AdS3 spacetimes are ob-

tained as a quotient of PSL(2,R) by subgroups. For the two BTZ cases, the identifications

are exactly the same as before with α = 2π and β = 2π
√
M ,

0M: (x, u) ∼ (x+ 2π`, u), (2.31)

BTZ: (x, u) ∼ (e2π
√
Mx, e2π

√
Mu) . (2.32)

However, the identification in the elliptic case is significantly more complicated. We take

θ = π/N with N ∈ N to reproduce the conical defect geometry, and find the identifications

CD: x ∼
`2x cos(2π/N) + `

2(u2 + x2 − `2) sin(2π/N)

`2 cos2(π/N) + `x sin(2π/N) + (u2 + x2) sin2(π/N)
(2.33)

u ∼ `2u

`2 cos2(π/N) + `x sin(2π/N) + (u2 + x2) sin2(π/N)
. (2.34)

It is simpler in this case to use the complex s coordinate, s = x+ iu, which is identified as

CD: s ∼ ` cos(π/N)s− `2 sin(π/N)

sin(π/N)s+ ` cos(π/N)
. (2.35)

2.3 AdS3 maps and metrics

2.3.1 Euclidean AdS

We will be making use of powerful maps that relate pure AdS3 to other locally AdS3

geometries [34, 35]. We begin by considering a general AdS3 solution, written as

ds2 = `2
(
−L

2
dz2 − L̄

2
dz̄2 +

(
1

y2
+
y2

16
LL̄

)
dzdz̄ +

dy2

y2

)
. (2.36)

We can see that for L = L̄ = 0 this is the usual Poincaré metric of pure AdS3. More

generally, we have the relationship

T (z) =
c

12
L(z) , (2.37)
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where T (z) is the holomorphic stress tensor and c = 3`/2G is the usual central charge

given by the Brown-Henneaux formula [36]. The analogous relation holds for the anti-

holomorphic stress tensor. For what follows, we will set ` = 1.

The transformation of the stress tensor can be exploited to find maps between AdS3 and

the quotients. We consider starting with the usual Poincaré metric (2.13) and implementing

the asymptotic relationship w = f(z). The stress tensor transforms as

T (z) =

(
df

dz

)2

T (w) +
c

12
{f(z), z} , (2.38)

where {f(z), z} is the Schwarzian derivative. Since T (w) = 0 for pure AdS, in the general

spacetime (2.36) we have

L(z) = {f(z), z} . (2.39)

From the CFT point of view, this allows us to get to any background we wish by identifying

f(z). Suppose we have the state |ψ〉 which is excited by an operator with weight hψ. Since

〈ψ|T (z)|ψ〉 =
hψ
z2

, (2.40)

we can find the asymptotic map f(z) relating this background to the flat background by

solving the differential equation

hψ
z2

=
c

12
{f(z), z} . (2.41)

In turn, the asymptotic map f(z) can be extended into the bulk using [35]

w = f(z)− 2y2f ′(z)2f̄ ′′(z̄)

4f ′(z)f̄ ′(z̄) + y2f ′′(z)f̄ ′′(z̄)
,

w̄ = f̄(z̄)− 2y2f̄ ′(z̄)2f ′′(z)

4f ′(z)f̄ ′(z̄) + y2f ′′(z)f̄ ′′(z̄)
,

u = y
4(f ′(z)f̄ ′(z̄))3/2

4f ′(z)f̄ ′(z̄) + y2f ′′(z)f̄ ′′(z̄)
,

(2.42)

which gives the full map between (2.13) and (2.36). In addition, if there is a map w = f(z)

that asymptotically implements the transformation, then for any constants a1, a2, a3, a

more general solution to (2.41) is

a1f(z)

1 + a2f(z)
+ a3 , (2.43)

which comes from SL(2,C) invariance. These maps will give the same metric regardless

of the ai parameters but the corresponding coordinate transformations will differ. For

simplicity we take a1 = 1, a2 = a3 = 0.

With this in place, we would like to work out the maps (2.42) for our AdS3 quotients.

The three cases we study correspond in the CFT to states excited by operators with weights

hCD =
c

24

(
1− 1

N2

)
,

h0M =
c

24
,

hBTZ =
c

24

(
1 +M

)
.

(2.44)
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In the case of the conical defect, we can see the weight is that of the twist operator and

these maps have been looked at before in other contexts [37, 38]. The 0M case is the

N →∞ or M → 0 limit of the other two. Furthermore, these weights are all non-negative

for N ≥ 1 and M ≥ 0, as they should be in a unitary CFT.

These three cases lead to three differential equations (2.41). One can try to solve them

using normal methods, or alternatively, one can surmise the form of f(z) from invariance

under the identifications (2.20), (2.21), (2.22) found from the group manifold approach.

These identifications suggest the asymptotic maps

fCD(z) = z−1/N , (2.45)

f0M(z) = −i log(z) , (2.46)

fBTZ(z) = exp
(
−i
√
M log z

)
, (2.47)

which reproduce the expected weights. As can be seen from the form of the conjugacy

classes (2.19), the N → ∞ and M → 0 limits produce the identity map, rather than the

appropriate 0M map, further emphasizing its distinct character.

Each asymptotic map can be extended into the bulk using (2.42), which for the conical

defect yields the full coordinate transformations

wCD =
z−1/N ((N2 − 1)y2 + 4N2zz̄)

((N + 1)2y2 + 4N2zz̄)
,

w̄CD =
z̄−1/N ((N2 − 1)y2 + 4N2zz̄)

((N + 1)2y2 + 4N2zz̄)
,

uCD =
4Ny(zz̄)(N−1)/2N

((N + 1)2y2 + 4N2zz̄)
.

(2.48)

Similarly, for massless BTZ we have the full coordinate transformations

w0M = −i2y
2 + (y2 + 4zz̄) log z

y2 + 4zz̄
,

w̄0M = i
2y2 + (y2 + 4zz̄) log z̄

y2 + 4zz̄
,

u0M =
4y
√
zz̄

y2 + 4zz̄
.

(2.49)

Finally, for massive BTZ the full coordinate transformations are

wBTZ =

(
(1− i

√
M)2y2 + 4zz̄

)
exp

(
− i
√
M log z

)
(1 +M)y2 + 4zz̄

,

w̄BTZ =

(
(1 + i

√
M)2y2 + 4zz̄

)
exp

(
i
√
M log z̄

)
(1 +M)y2 + 4zz̄

,

uBTZ =
4y
√
Mzz̄ exp

(
− i
√
M

2 log( zz̄ )
)

(1 +M)y2 + 4zz̄
.

(2.50)
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Applying these transformations to pure AdS3 yields metrics of the form (2.36), with L and

L̄ determined by (2.44) through (2.39) and (2.41),

ds2
CD =

dzdz̄+dy2

y2
− 1

4

(
1− 1

N2

)
dz2

z2
− 1

4

(
1− 1

N2

)
dz̄2

z̄2
+

1

16

(
1− 1

N2

)2 y2

(zz̄)2
dzdz̄ ,

ds2
0M =

dzdz̄+dy2

y2
− 1

4

dz2

z2
− 1

4

dz̄2

z̄2
+

1

16

y2

(zz̄)2
dzdz̄ ,

ds2
BTZ =

dzdz̄+dy2

y2
− (1+M)

4

dz2

z2
− (1+M)

4

dz̄2

z̄2
+

(1+M)2

16

y2

(zz̄)2
dzdz̄ ,

(2.51)

which confirms that the asymptotic maps in (2.45)–(2.47) produce the expected metrics

when extended into the bulk. We finish by noting that although the massless BTZ metric

can be obtained as a simple limit N →∞ or M → 0 of the conical defect or BTZ metrics

respectively, the coordinate transformations are not related in this way.

2.3.2 Lorentzian AdS

The above maps do not generalize straightforwardly to the timeslice. However, we can

again use the knowledge that the maps should respect the identifications (2.31), (2.32),

and (2.35) to determine

sCD = i
1 + z−1/N

1− z−1/N
, (2.52)

s0M = −i log(z) , (2.53)

sBTZ = exp
(
−i
√
M log z

)
. (2.54)

We note that these are full maps on the UHP, not asymptotic ones. The latter two are

similar to the asymptotic maps we had before, as the identification on the timeslice is

unaffected. The map for the conical defect has a similar piece, but needs to be changed to

reflect the change in the elliptic element. In the following, it will be easiest to write the

single complex coordinate z, which we will call the quotient coordinate for all three cases,

as z = reiθ.

In the original x, u coordinates, the map for the conical defect looks like

xCD =
2r−1/N sin(θ/N)

1 + r−2/N − 2r−1/N cos(θ/N)
,

uCD =
1− r−2/N

1 + r−2/N − 2r−1/N cos(θ/N)
.

(2.55)

For massless BTZ it takes the form

x0M = θ ,

u0M = − log r .
(2.56)

Finally for massive BTZ it looks like

xBTZ = e
√
Mθ cos(

√
M log r) ,

uBTZ = −e
√
Mθ sin(

√
M log r) .

(2.57)

– 11 –



J
H
E
P
0
3
(
2
0
1
9
)
0
5
8

In the first two cases the boundary u = 0 is when r = 1 in the new coordinates, but for

massive BTZ we have two boundaries, r = 1 and r = exp
(
− π√

M

)
. The identification also

produces a horizon at x = 0 in the Poincaré coordinates which interpolates between the

boundaries [39]. Furthermore, to have u ≥ 0, we need r > 1 for CD, r ≤ 1 for 0M, and

exp
(
− π√

M

)
≤ r ≤ 1 for BTZ. Transforming the metric with these maps produces

ds2
CD =

4r2/N

N2r2(r2/N − 1)2
(dr2 + r2dθ2) , (2.58)

ds2
0M =

1

r2 log(r)2
(dr2 + r2dθ2) , (2.59)

ds2
BTZ =

M

r2 sin2(
√
M log r)

(dr2 + r2dθ2) . (2.60)

We see that the limits N →∞ and M → 0 reproduce the 0M metric, while taking N → 1

or inserting M = −1 gives back pure AdS3.

Finally, for the CFT analysis, we are interested in the asymptotic maps which are now

easily obtained from the full ones

xCD = cot

(
θ

2N

)
, (2.61)

x0M = θ, (2.62)

xBTZ = ±e
√
Mθ . (2.63)

Note that the sign in the BTZ case will depend on which boundary one considers. We

can interpolate between the two boundaries by analytic continuation, θ → θ + i π√
M

[40].

Further, if we interpret θ to be the complex angle of z = reiθ, the monodromy z = ze2πi

will implement the identifications (2.35), (2.31), and (2.32), similarly to the Euclidean case.

3 Bulk analysis of geodesic structure

3.1 Euclidean analysis

In this section we use the maps between Poincaré AdS3 and the quotient geometries to study

the resulting structure of geodesics via the group manifold approach. The non-analyticities

in the maps allow us to distinguish geodesics with different winding numbers.

Since the geometries (2.51) are all locally AdS3, the properties of their geodesics are

closely related to those of pure AdS3. More concretely, the lengths of quotient geodesics

are given by lengths of AdS3 geodesics whose endpoints are related by the quotient action.

We calculate them using the method outlined in [41]. We consider points p, q in the group

manifold of AdS3 as in equation (2.17). The length of the geodesic between these points

found in (2.14) is then rewritten as

d(p, q) = cosh−1

(
Tr(p−1q)

2

)
. (3.1)
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The boundary is represented by singular matrices p, q, up to a divergent factor, and

the geodesic distance between them diverges. We regulate by considering curves p(ρ),

q(ρ) which approach the boundary as ρ → ∞, and which have the property that

limρ→∞ p(ρ)/ρ = p∂ , and similarly q∂ , are finite and non-zero. Then in the boundary

limit the geodesic length goes to

d(p∂ , q∂) = log ρ2 + log(Tr(R⊥p
T
∂R

T
⊥q∂)) +O(1) , (3.2)

where R⊥ = ( 0 −1
1 0 ). The correction term indicates that any rescaling of ρ can give a

different finite contribution. In our quotient coordinates, we choose ρ = 1/ε where the

boundary is cut off at y = ε. The radial coordinate is different for each of the different

quotient geometries, so the different regulators are labelled.

This approach affords a very clear understanding of non-minimal geodesic lengths.

We quotient the AdS3 group manifold by the discrete group generated by one element

from (2.19). The length of the geodesic connecting the boundary points p∂ and hq∂h
† is

still given by (3.2),

d(p∂ , hq∂h
†) = log ρ2 + log(Tr(R⊥p

T
∂R

T
⊥hq∂h

†)) +O(1) , (3.3)

but in the quotient spacetime q∂ and hq∂h
† are identified. Typically d(p∂ , q∂) 6=d(p∂ , hq∂h

†).

We now show that non-minimal geodesics can also be identified from monodromies in the

asymptotic maps.

We now parametrize the points in the quotient manifold by mapping the embedding

coordinates for Poincaré, equation (2.11), to our quotient coordinates (z, z̄, y). Using (2.17)

to find the group elements yields

CD :
(zz̄)

1−N
2N

4Ny

(
(zz̄)−

1
N ((N−1)2y2+4N2zz̄) z−

1
N ((N2−1)y2+4N2zz̄)

z̄−
1
N ((N2−1)y2+4N2zz̄) (N+1)2y2+4N2zz̄

)
, (3.4)

0M :
1

4y
√
zz̄

(
2y2(2+log(zz̄))+(y2+4zz̄) logz log z̄ −i(2y2+(y2+4zz̄) logz)

i(2y2+(y2+4zz̄) log z̄) y2+4zz̄

)
, (3.5)

BTZ :
z−(1−i

√
M)/2z̄−(1+i

√
M)/2

4
√
My

(3.6)

×

(
z−i
√
M z̄i

√
M ((M+1)y2+4zz̄) z−i

√
M ((1−i

√
M)2y2+4zz̄)

z̄i
√
M ((1+i

√
M)2y2+4zz̄) (M+1)y2+4zz̄

)
.

One can check that conjugation by the elliptic, parabolic, or hyperbolic generators corre-

sponds to taking z → ze2πi for the respective points. To consider boundary points we take

the limit described above resulting in

CD:
N(zz̄)

1+N
2N

εCD

(
(zz̄)−

1
N z−

1
N

z̄−
1
N 1

)
, (3.7)

0M:

√
zz̄

ε0M

(
log z log z̄ −i log z

i log z̄ 1

)
, (3.8)

BTZ:
z(1+i

√
M)/2z̄(1−i

√
M)/2

√
MεBTZ

(
z−i
√
M z̄i

√
M z−i

√
M

z̄i
√
M 1

)
. (3.9)
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Now we can pick two points, say z1 and z2, and compute the geodesic length using equa-

tion (3.2),

dCD = log

[
N2

(
z

1
N
1 − z

1
N
2

)(
z̄

1
N
1 − z̄

1
N
2

)]
+
N − 1

2N
log z1z̄1z2z̄2 − 2 log εCD, (3.10)

d0M = log [(log z1 − log z2)(log z̄1 − log z̄2)] +
1

2
log z1z̄1z2z̄2 − 2 log ε0M, (3.11)

dBTZ = log
[
M−1

(
zi
√
M

1 − zi
√
M

2

)(
z̄i
√
M

2 − z̄i
√
M

1

)]
+

1− i
√
M

2
log z1z̄1z2z̄2 − 2 log εBTZ .

(3.12)

Like for the metrics, but unlike for the transformations, the 0M geodesic distance is cor-

rectly obtained by taking either N → ∞ or M → 0. Since conjugation by a quotient

generator takes z → ze2πi, and with reference to (3.3), we also obtain winding geodesic

lengths from these formulae. This demonstrates how non-analyticities in the asymptotic

maps give rise to winding geodesics in the defect geometries.

3.2 Lorentzian analysis

We can proceed similarly using our maps (2.55), (2.56), and (2.57) on the embedding

coordinates (2.23) to find the matrix representations of points in the various defects as

CD:
1

1− r−2/N

(
1 + r−2/N + 2r−1/N cos

(
θ
N

)
2r−1/N sin

(
θ
N

)
2r−1/N sin

(
θ
N

)
1 + r−2/N − 2r−1/N cos

(
θ
N

)) , (3.13)

0M: − 1

log r

(
θ2 + log r2 θ

θ 1

)
, (3.14)

BTZ: − 1

sin(
√
M log r)

(
e
√
Mθ cos(

√
M log r)

cos(
√
M log r) e−

√
Mθ

)
. (3.15)

Again, conjugation by the appropriate quotient generator takes θ → θ+ 2π. For boundary

points we take the limit r − 1 = ε→ 0 in the conical defect case, and 1− r = ε→ 0 in the

massless and massive BTZ cases. This is due to the difference in domains of r, as described

in section 2.3.2. Taking these limits gives the points

CD:
2N sin2

(
θ

2N

)
εCD

(
cot2

(
θ

2N

)
cot
(
θ

2N

)
cot
(
θ

2N

)
1

)
, (3.16)

0M:
1

ε0M

(
θ2 θ

θ 1

)
, (3.17)

BTZ:
e−
√
Mθ

√
MεBTZ

(
e2
√
Mθ e

√
Mθ

e
√
Mθ 1

)
. (3.18)
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We can pick two points on the boundary circle, θ1 and θ2, to find the geodesic lengths

from (3.2),

dCD = log

[
4N2 sin2

(
θ1 − θ2

2N

)]
− 2 log εCD , (3.19)

d0M = log[(θ1 − θ2)2]− 2 log ε0M , (3.20)

dBTZ = log

[
4

M
sinh2

(√
M
θ1 − θ2

2

)]
− 2 log εBTZ . (3.21)

Again, we see a nice smooth limit between the N →∞ and M → 0 limits for the massless

BTZ geodesic lengths even though their maps and their embedding coordinates do not

have a smooth limit.

In the BTZ expression above we took both points to be on the same boundary r = 1.

Points on the r = exp[− π√
M

] boundary are parametrized as

BTZ:
e−
√
Mθ

√
Mε̃BTZ

(
e2
√
Mθ −e

√
Mθ

−e
√
Mθ 1

)
, (3.22)

where we have a different regulator, exp[ π√
M

]r − 1 = ε̃BTZ → 0. For two points on the

r = exp[− π√
M

] boundary the distance formula is unchanged, but for horizon crossing

geodesics between the two boundaries the lengths are

dBTZ, crossing = log

[
4

M
cosh2

(√
M
θ1 − θ2

2

)]
− log εBTZε̃BTZ . (3.23)

Note that this is related to the single sided geodesic length with θ → θ + iπ√
M

.

Once again, in view of (3.3) and the fact that quotient generators take θ → θ + 2π

we find that non-analyticities in the maps between pure AdS3 and the quotient geometries

distinguish boundary anchored geodesics of different windings.

4 CFT analysis of OPE blocks

4.1 Euclidean analysis

In this section we argue that the non-analyticities in the asymptotic maps between pure

AdS3 and the quotient geometries which distinguish winding geodesics also distinguish

quotient invariant contributions to OPE blocks. The terms in the OPE block decomposition

are in correspondence with the winding geodesics, which suggests a dual relationship.

We start by mapping vacuum OPE blocks to a non-trivial background using the asymp-

totic maps from our bulk analysis. Consider a transformation x→ x′ where

Ω(x′) = det

(
∂x′µ

∂xν

)
. (4.1)

An OPE block B of scalar operators will in general transform as [11]

Bij
k (xi, xj) =

(
Ω(x′i)

Ω(x′j)

)∆ij/2

Bij
k (x′i, x

′
j) , (4.2)
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where ∆ij ≡ ∆i−∆j . For simplicity, we will set ∆ij = 0. Now we apply equations (2.45)–

(2.47) for the CD, 0M, and BTZ cases respectively which naively gives the transformation

Bij
k (zi, z̄i, zj , z̄j) = Bij

k (wi, w̄i, wj , w̄j) . (4.3)

However, we immediately see a problem. All of these maps have a branch cut as we take

z → ze2πi, whereas the OPE block should be a single-valued observable. If we wish to

remove branch cuts from the OPE block, we should instead consider

CD: Bijk (zi, z̄i, zj , z̄j) =
∑
pi,pj

Bijk

(
wie
− 2πipi

N , w̄ie
2πipi
N , wje

−
2πipj
N , w̄je

2πipj
N

)
, (4.4)

0M: Bijk (zi, z̄i, zj , z̄j) =
∑
pi,pj

Bijk (wi + 2πpi, w̄i + 2πpi, wj + 2πpj , w̄j + 2πpj) , (4.5)

BTZ: Bijk (zi, z̄i, zj , z̄j) =
∑
pi,pj

Bijk
(
wie

2πpi
√
M , w̄ie

2πpi
√
M , wje

2πpj
√
M , w̄je

2πpj
√
M
)
. (4.6)

These are sums over pre-images of points identified under the maps. Alternatively, these

sums can be argued for from the quotient identifications on pure AdS3 in equations (2.20),

(2.21), and (2.22) respectively as they are invariant under the boundary action of the

quotient. This method of images has been used frequently for describing quotient invariant

observables [25, 42, 43].

We now relate these images to geodesics. Fixing one of the points in the vacuum

OPE block and taking images of the other point defines a sequence of different geodesics

in the pure AdS3 bulk. Under the quotient these all map to geodesics with the same

endpoints, but differing by their winding. For conical defects the paper [22] found that

fields integrated on each of these winding geodesics have a dual description, the partial

OPE block, summarized in equation (2.10). Similarly, we can reorganize the sums above,

decomposing the full OPE blocks into distinct contributions labelled by m,

CD : Bijk (zi, z̄i,zj , z̄j) =
∑
m

Bijk,m
(
wie
− 2πim

N , w̄ie
2πim
N ,wje

−2πim
N , w̄je

2πim
N

)
, (4.7)

0M : Bijk (zi, z̄i,zj , z̄j) =
∑
m

Bijk,m (wi+2πm,w̄i+2πm,wj+2πm,w̄j+2πm) , (4.8)

BTZ : Bijk (zi, z̄i,zj , z̄j) =
∑
m

Bijk,m
(
wie

2πm
√
M , w̄ie

2πm
√
M ,wje

2πm
√
M , w̄je

2πm
√
M
)
, (4.9)

where

CD : Bijk,m(wi, w̄i,wj , w̄j) =
∑
b

Bijk
(
wie

2πi(m−b)
N , w̄ie

−2πi(m−b)
N ,wje

− 2πib
N , w̄je

2πib
N

)
, (4.10)

0M : Bijk,m(wi, w̄i,wj , w̄j) =
∑
b

Bijk (wi+2π(b−m), w̄i+2π(b−m),wj+2πb, w̄j+2πb) , (4.11)

BTZ : Bijk,m(wi, w̄i,wj , w̄j) =
∑
b

Bijk
(
wie

2π
√
M(b−m), w̄ie

2π
√
M(b−m),wje

2π
√
Mb, w̄je

2π
√
Mb
)
.

(4.12)
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Each of the new quantities Bijk,m is invariant under the appropriate quotient action on

both coordinates zi,j sending z → ze2πi, meaning they are valid observables in the quotient

coordinates. This has been expressed before in terms of invariance under the CFT’s discrete

gauge symmetry that is induced by the quotient [22, 29].

Our suggestion is that each partial OPE block Bijk,m(wi, w̄i, wj , w̄j) is dual to the bulk

field integrated over a geodesic with winding related to the label m. By construction, each

partial OPE block depends on pairs of boundary points at a fixed separation determined

by m. This can be seen from the geodesic distance formulae, equations (3.10)–(3.12), by

acting with the quotient generator b times on point z1, and b + m times on point z2, as

dictated by equations (4.10)–(4.12) and equations (4.7)–(4.9):

dCD(m, b) = log

[
N2

(
z

1
N
1 − z

1
N
2 e2πmi/N

)(
z̄

1
N
1 − z̄

1
N
2 e−2πmi/N

)]
(4.13)

+
N − 1

2N
log z1z̄1z2z̄2 − 2 log εCD,

d0M(m, b) = log [(log z1 − log z2 − 2πmi)(log z̄1 − log z̄2 + 2πmi)] (4.14)

+
1

2
log z1z̄1z2z̄2 − 2 log ε0M,

dBTZ(m, b) = log
[
M−1

(
zi
√
M

1 − zi
√
M

2 e2π
√
Mm
)(

z̄i
√
M

2 − z̄i
√
M

1 e−2π
√
Mm
)]

(4.15)

+
1− i

√
M

2
log z1z̄1z2z̄2 − 2 log εBTZ.

In each case we find that all dependence on the b-sum index drops out. This means that each

vacuum OPE block entering Bijk,m(wi, w̄i, wj , w̄j) defines an AdS3 geodesic, all of which have

the same length and become identified under the quotient. Hence, each Bijk,m(wi, w̄i, wj , w̄j)

picks out a unique geodesic in the dual quotient geometry, with winding specified by m.

Blocks with different m are related by repeated action of the quotient generator on only

one of the boundary points in the same way that geodesics with different windings are

related, as seen in (3.3) and the results of section 3.

The new quantities Bijk,m are each defined as a sum over vacuum OPE blocks which are

known to be convergent inside correlation functions [44, 45], but any required normalization

has been neglected above. For the conical defect (4.10), the sum is finite and can be

normalized as

CD : Bijk,m(wi, w̄i, wj , w̄j) =
1

N

N−1∑
b=0

Bijk
(
wie

2πi(m−b)
N , w̄ie

−2πi(m−b)
N , wje

− 2πib
N , w̄je

2πib
N

)
.

(4.16)

The b-sum ensures that Bijk,m is quotient invariant, but does not alter the overall con-

tribution to the OPE. This follows since the N terms in the sum each give equivalent

contributions due to conformal symmetry, or from bulk considerations due to the equality

of geodesic distances discussed in the previous paragraph.
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For the massless and massive BTZ cases, the b-sums are infinite making the normaliza-

tion appear ambiguous and bringing the convergence of the sum into question. However,

we know that the OPE itself is convergent in CFTs, and our Bijk,m represents only a partial

contribution to the full OPE. Again, although an infinite number of images are included

to ensure invariance under the quotient, each image represents an equivalent contribution

by symmetry. We can normalize the operators using a formal limit

0M : Bijk,m = lim
N→∞

1

2N+1

N∑
b=−N

Bijk (wi+2π(b−m), w̄i+2π(b−m),wj+2πb, w̄j+2πb), (4.17)

BTZ : Bijk,m = lim
N→∞

1

2N+1

N∑
b=−N

Bijk
(
wie

2π
√
M(b−m), w̄ie

2π
√
M(b−m),wje

2π
√
Mb, w̄je

2π
√
Mb
)
.

(4.18)

In contrast, the full OPE blocks in equations (4.7)–(4.9) are not sums over equivalent

contributions. By convention we can arrange for the m = 0 block to correspond to the

minimal operator separation, and hence the minimal bulk geodesic. All other m 6= 0

blocks are subleading since they represent operators at greater separation in the vacuum

where there are no complications from the presence of other operators. The fall off with

distance can be seen explicitly in the smeared representation for vacuum OPE blocks [11].

The conical defect sum is finite and can be normalized as in (4.16), whereas for the BTZ

cases, we see from (4.14) and (4.15) that the operators become infinitely separated for large

|m|, and their contribution becomes negligible. This is the mechanism by which similar

applications of the method of images for conical defects and BTZ spacetimes produce finite

correlators from infinite sums [25, 46, 47].

4.2 Lorentzian analysis

The Lorentzian case is slightly different because the boundary is not parametrized by a

complex coordinate. Still, we can rely on invariance under the quotient action to guide us.

OPE blocks in the quotient coordinate θ transform to vacuum OPE blocks using eq. (4.2)

with the asymptotic maps (2.61)–(2.63). For simplicity, we will specialize to ∆i = ∆j .

Once again, these maps are not invariant under θ → θ+ 2π meaning there is an ambiguity

in the transformation of the naive defect OPE blocks. To define single-valued OPE blocks

we sum over images, ensuring consistency with the u→ 0 boundary limits of (2.31)–(2.33).

We then have the following transformations for OPE blocks

CD: Bijk (θi, θj) =
∑
pi,pj

Bijk

(
cos(piπ/N)xi − sin(piπ/N)

sin(piπ/N)xi + cos(piπ/N)
,

cos(pjπ/N)xj − sin(pjπ/N)

sin(pjπ/N)xj + cos(pjπ/N)

)
,

(4.19)

0M: Bijk (θi, θj) =
∑
pi,pj

Bijk (xi + 2πpi, xj + 2πpj) , (4.20)

BTZ: Bijk (θi, θj) =
∑
pi,pj

Bijk (xie
2πpi
√
M , xje

2πpj
√
M ) . (4.21)
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For the BTZ case we have written the single sided OPE block above. The OPE block

relating operators on different boundaries is related by the analytic continuation of one of

the θ coordinates,

BTZ, crossing: Bijk (θi + iπ/
√
M, θj) =

∑
pi,pj

Bijk (−xie2πpi
√
M , xje

2πpj
√
M ) . (4.22)

This matches nicely with the analytic continuation found both in the coordinate transfor-

mations (2.63) and in the geodesic lengths (3.23).

As before we can reorganize the sums, writing them as a decomposition into quotient

invariant partial OPE blocks

CD: Bijk (θi,θj) =
∑
m

Bijk,m

(
cos(mπ/N)xi−sin(mπ/N)

sin(mπ/N)xi+cos(mπ/N)
,
cos(mπ/N)xj−sin(mπ/N)

sin(mπ/N)xj+cos(mπ/N)

)
,

(4.23)

0M: Bijk (θi,θj) =
∑
m

Bijk,m(xi+2πm,xj+2πm) , (4.24)

BTZ: Bijk (θi,θj) =
∑
m

Bijk,m
(
xie

2πm
√
M ,xje

2πm
√
M
)
, (4.25)

BTZ, crossing: Bijk
(
θi+iπ/

√
M,θj

)
=
∑
m

Bijk,m
(
−xie2πm

√
M ,xje

2πm
√
M
)
. (4.26)

where

CD: Bijk,m(xi, xj) (4.27)

=
∑
b

Bijk

(
cos((b−m)π/N)xi − sin((b−m)π/N)

sin((b−m)π/N)xi + cos((b−m)π/N)
,
cos(bπ/N)xj − sin(bπ/N)

sin(bπ/N)xj + cos(bπ/N)

)
,

0M: Bijk,m(xi, xj) =
∑
b

Bijk (xi + 2π(b−m), xj + 2πb) , (4.28)

BTZ: Bijk,m(xi, xj) =
∑
b

Bijk
(
xie

2π(b−m)
√
M , xje

2πb
√
M
)
. (4.29)

For the BTZ partial OPE blocks, the above equation encompasses both signs of the x

coordinates allowed in (2.63).

The partial OPE blocks Bijk,m(xi, xj) give the contribution to the full OPE block from

image operators at a fixed separation in x, indicated by the label m. Each vacuum OPE

block included in the sum gives an identical contribution, as is apparent by the conformal

symmetry of the vacuum state, but the sum is necessary for manifest invariance under the

quotient. This can be compared with the geodesic distance formulae, equations (3.19)–

(3.21) and (3.23). Acting with the quotient generator b times on point θ1, and b+m times
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on point θ2 gives

dCD(b,m) = log

[
4N2 sin2

(
θ1 − θ2 − 2πm

2N

)]
− 2 log εCD, (4.30)

d0M(b,m) = log
[
(θ1 − θ2 + 2πm)2

]
− 2 log ε0M , (4.31)

dBTZ(b,m) = log

[
4

M
sinh2

(√
M
θ1 − θ2 − 2πm

2

)]
− 2 log εBTZ, (4.32)

dBTZ, crossing(b,m) = log

[
4

M
cosh2

(√
M
θ1 − θ2 − 2πm

2

)]
− log εBTZε̃BTZ. (4.33)

In every case the dependence on b drops out, showing a precise matching between the

behaviour of geodesics and the structure of Bijk,m(xi, xj). Since each term gives an equivalent

contribution, the partial OPE blocks can be normalized in the same way as described in

section 4.1.

Each Bijk,m(xi, xj) block is invariant when the quotient acts on both xi,j , while blocks

with different m are related by repeated action on only one of xi,j . Winding or crossing

geodesics of different lengths are related by the repeated quotient action on one endpoint,

and each is invariant under the action on both endpoints. Hence, we also interpret the

Bijk,m(xi, xj) as giving the contribution to the full OPE block from the dual bulk field

integrated over a single geodesic, which may be minimal, winding, or horizon crossing as

appropriate.

5 Discussion

In this paper we have explored generalizing the holographic duality between OPE blocks

and geodesic integrated fields to non-trivial locally AdS3 spacetimes, both in the Euclidean

case and for the Poincaré disk of Lorentzian AdS3. Such spacetimes can be described as

quotients of AdS3 by discrete subgroups of the isometry group. We found that the trans-

formations between AdS3 and its quotients involve non-analyticities which lead to branch

cuts in OPE blocks for the dual excited CFT states. We proposed that the branch cuts

should be removed by summing over image points of the quotient action, while also noting

a natural decomposition of the OPE blocks into quotient invariant contributions. These

contributions, partial OPE blocks, are observables in and of themselves, carrying more

fine-grained information than the full OPE block. We explained how this decomposition

arises from the coordinate transformations, and offered a dual interpretation of the partial

OPE blocks as bulk fields integrated over individual winding or crossing geodesics.

On the bulk side we presented coordinate transformations between pure AdS3 and the

conical defect, the massless BTZ black hole, and massive BTZ geometries. These maps in-

corporate the corresponding quotient identifications, which are expressed as a monodromy

of the complex coordinate describing the defect spacetime. The identifications map sets

of boundary anchored geodesics between distinct pairs of points in pure AdS3 to geodesics

with identical endpoints in the new spacetime, differentiated by their winding around the

defect. We showed how the lengths of these geodesics transform emphasizing the relation

to monodromy.
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In the CFT we showed that branch cuts appear in OPE blocks after the transformation

from pure AdS3 to the quotient spacetime. Removing these branch cuts by summing over

images led to a new quotient invariant quantity, the partial OPE block. This process can

also be seen as requiring the OPE blocks to be invariant under a discrete gauge symmetry

induced by the quotient. The various partial OPE blocks are related by applying the

quotient generator to one of the insertion points. The same action distinguishes geodesics

with different winding. In view of the duality known for pure AdS3, we conjecture that

partial OPE blocks are dual to fields integrated over the individual geodesics in the bulk

which can be minimal, non-minimal, or even horizon crossing.

In the case of the conical defect, the discrete quotient group is finite and therefore

isomorphic to ZN . However, for both BTZ cases, the group is infinite and the interpretation

of how the orbifold CFT is properly defined is less clear. The idea of orbifolding by these

infinite discrete groups is not new [48], but our interpretation of how these discrete gauge

symmetries affect the OPE blocks and their dual is. We have not proven explicitly that the

partial OPE blocks are dual to fields integrated over the minimal or non-minimal geodesics,

as this would require a greater understanding of the intertwining relation for the Radon

transform in non-pure AdS3 [11].

Differences arise between the Euclidean and Lorenztian descriptions for the obvious

reason: the monodromy of the z coordinate only exists if z is complex. In Euclidean

signature the boundary is naturally complex and the monodromy affecting OPE blocks is

easily understood. In Lorentzian signature we restricted our considerations to the upper

half plane description of the Poincaré disk to accord with this. In the full Lorentzian case,

it is difficult to see how we could reduce the action of the quotient into the monodromy of

a complex coordinate as it is unclear what the correct combination of coordinates would

be. In addition, for Lorentzian AdS3 there are no geodesics between timelike separated

boundary points, whereas OPE blocks for timelike separated insertions remain well-defined.

It would be interesting to understand the duality in these cases, and also to find maps

analogous to those displayed here for coordinate systems other than Poincaré, in both the

Euclidean and Lorentzian cases.

There is a superficial similarity of our discussions about the monodromy of OPE blocks

with other works that have considered monodromies. Some papers, such as [49–51], focus on

correlators with large numbers of light operators in the background of two heavy insertions.

Monodromy is used to relate the possible OPE channels of the overall correlator. Other

papers, such as [52, 53], use monodromy as a way to pick out different channels of four

point functions by switching heavy OPE exchanges with lighter ones. There are two main

differences in what we have discussed. First, we are considering a single OPE block, not

the full OPE, so the exchanged operators are fixed. All the works mentioned above involve

multiple operators, which can fuse in different channels. In contrast the OPE block is a

single operator; there is no notion of different fusion channels. Second, we implement sums

to conform to the discrete gauge symmetry that is present on the base but not on the cover,

which differs from the above works.

It is also important to highlight a possible connection to entwinement [28, 29, 54].

Entwinement has been proposed as the CFT dual to the length of non-minimal boundary
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anchored geodesics present in non-pure AdS spacetimes. Unlike the entanglement entropy

of a boundary subregion, which is a measure of correlations among spatially organized

degrees of freedom, these works suggest that entwinement measures correlations among

internal, discretely gauged degrees of freedom. It seems likely that the entwinement/non-

minimal geodesic length duality is closely related to the OPE block/geodesic integrated field

duality, and it would be interesting to understand the deeper connections between them.
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